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Thin film of non-Newtonian fluid on an incline
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The slow flow of thin liquid films on solid surfaces is an important phenomenon in nature and in industrial
processes, and an intensive effort has been made to investigate it. It is well known that the contact line of
currents on an inclined surface may become unstable and then a pattern of “fingers” develops that affects the
quality of the coatings. This instability has been intensively studied due to its relevance for the technology of
various industrial processes. So far the theoretical and numerical research has been focused on Newtonian
fluids, notwithstanding that often in the real situations as well as in the experiments, the rheology of the
involved liquid is non-Newtonian. Using the lubrication approximation, we derive the governing equations for
a current of a power law non-Newtonian fluid on an inclined plane under the action of gravity and the viscous
stresses. We show that surface tension effects can be included in the theory by a slight modification of the
governing equations, that can then be used as a starting point to investigate the influence of rheology on the
fingering instability and other phenomena of interest. We consider the one-dimensional case and we present
three families of traveling wave solutions: two running downwards and the other upwards.
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[. INTRODUCTION authors obtained the governing equations of slow gravity
flows on a horizontal plane for a fluid with a power law

The slow flow of a thin film of a liquid is an ubiquitous rheology, and in Ref.11] the flow of a Bingham fluid on an

of mammalian lungs, tear films in the eye, and in artificial @PProximation. We must also mention in this context the in-

; : : ot : : tigation of the stability of the viscoelastic coating flows
instances such as microchip fabrication, tertiary oil recover es -
as well as in many coating processes. Thus, an intensi\?éy Fraysse and Homsj12] and Spaid and Homsp 3. In

offort has been spent to achieve a qood insiaht about the elated problems concerning flows over nonhorizontal sur-
P 9 9 sf.:elces, the power law rheology as well as the Bingham model

types of flows. . . have been assumed in the investigation of roll waves on a
The theory of these currents is usually developed withing a0\ layer of fluid mud within the hydraulic approxima-
the frame of the lubrication aproximation. Flows on a hori-ion [14,15. The same approximation in conjunction with
zontal plane have been studied theoretically and in the labgpe viscoplastic Herschel-Bulkley model has been employed
ratory by several authorésee, for example, Ref§1-4]).  to study mud flows down a slogd6]. See also the work of
The equations for the same problem but on a general topo@oussot on roll waves of non-Newtonian fluids7].
raphy have been derived by Buckmasitgf. Since the ex- In this paper, we investigate theoretically the slow flow of
perimental research of Hupp¢&] and Silvi and Dussafi7]  a power law non-Newtonian liquid on an incline. In Sec. Il
on currents with a contact line on an inclined plane, it is wellwe derive within the lubrication approximation the govern-
known that the contact line may become unstable and theniag equations for the evolution of the free surface and the
pattern of “fingers” develops. This instability has been in- velocity of the fluid when it is under the effect of gravity and
tensively studied theoretically and numericalbee, Ref[8]  viscous stresses. Since the role of surface tension appears to
and references therginlue to its relevance for the technol- be crucial in the fingering process, and the influence of non-
ogy of various industrial processes. All the previously men-Newtonian behavior on this phenomenon has not been inves-
tioned theoretical and numerical works are based on the a#igated, at the end of this section we show how to modify the
sumption that the liquid is Newtonian, notwithstanding thegoverning equatlons.to take mtp account th.e surf_ace tension.
fact that the liquids involved in the real situations and in the!n Sec. Il we consider the simple one-dimensional case,

experiments are often non-Newtonian. There are few papet&nere the flow is downslope or upslope. Besides the two

where the non-Newtonian behavior is considered. In the re?€"Y Simple solutions, we find three families of traveling

cent paper of de Bruyet al. [9], the conditions for the fin- wave solutions that can be obtained in closed form. In addi-

gering instability of the contact line are investigated for ation, we discuss the flow in the limits of a very gentle and a

yield-stress fluid, but the equations that describe the evolu?ery steep slope. Section IV contains the final discussion.

tion of the free surface are not derived. In REEQ] the Il. BASIC EQUATIONS

We consider a fluid moving on a nonhorizontal plane,
*Electronic address: jgratton@tinfip.Ifp.uba.ar whose angle of inclination i, as shown in Fig. 1. The
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. 1
eij =5 (djvitdvj), (7)

z=h(xy,1) whereéi j are the components of the strain rate tengas, its
second invariant, anéd and A are positive constants. The
power law rheology is the simplest way to model many non-
Newtonian fluids of practical interest, and with appropriate
choices ofA and\ according to the strain rates of the prob-

lem at hand, it describes reasonably well their behavior. The

FIG. 1. Geometry of the problem. Newtonian rheology is retrieved setting=1, in which case
A is the viscosity.
coordinatez is perpendicular to the plane, and tke coor- We callU; andW the characteristic velocities parallel and

dinates lie in the plang;is horizontal, anc increases down- perpendicular to the plane, respectively @ndV are thex

ward. We denote the components of the velocity of the fluigandy components ot , respectively. From Eq.(6) we find

in the directionsx, y, andz asu, v, andw, respectively. that U >W=HU, /L. Using this result, rheological laws
Let z=h=h(x,y,t) be the free surface of the current, (7), and Eq.(1), it is possible to estimate the order of mag-

whose characteristic thickness and characteristic length alorigjtude of each term in Eqs¢3), (4), and(5). Then, retaining

the plane we denote withl and L, respectively. The main only the relevant terms, these equations can be approximated

assumption in the lubrication approximation is to
H<L. (1) — dyp+ 9,74+ pg Sina=0, (8)
From this, it is clear that the component of the velocity par- —gyp+,7,,=0, (9)
allel to the plane is much larger than the normal component,
so that —d,p— pg cosa=0. (10
Ju?+v2>|w|. 2

The last equation states that the pressure is hydrostatic as

We shall consider sufficiently slow flows so that the inertial usual in the lubrication approximation. Integrating this equa-
tion and using the boundary conditips=0 atz=h, we find

effects can be neglected. It will be shown later that this re-
quires that the appropriate Reynolds number must be of the

order of unity or less. To derive the governing equations of p=pg cosa(h—z). 1D
these flows we shall disregard momentarily the surface ten-

sion, so that the liquid is flowing under the action of gravity The relevant components of stress tensor are

and the viscous stresses. At the end of this section, we show

h?fw :hese equations must be modified to include capillarity = ALE[(3,U)2+ (9,0) 2} A2y, (12)
effects.

The equations of momentum balance and the equation of ) ) (Lo
continuity can be written as 7y = AE[(U) 7+ (d0) 2} N2,y (13

— OyP+ dxTxxt Oy Tyt 9774+ pg Sina=0, (3)  Replacing Egs(11), (12), and(13) in Egs.(8) and(9), inte-
grating fromz=0 to z=h, and imposing the no stress con-

— dyP+ dxTyxt dyTyyt d,7y,=0, (4)  dition at the free surfaceu,=v,=0 atz=h), we obtain
— 9P+ Iy Tyt dyToy+ 9,75~ pg COS@ =0, (5) [u2+02)A" N2y =K (tana—hy)(h—2), (14)
du+dyv +9,Ww=0, (6) [uZ+0v2]A" N2y, = —Khy(h-2), (15)

Wherep is the pressure is the densityg is the acpeleration whereK=A"12(1-M/2 ,q cosa>0 and the suffixes df, u,
of gravity, andr; are the components of the deviatoric stress, genote derivatives. After some algebraic manipulation of

tensor. o _ these equations it is possible to obtain
We assume a power law constitutive equation of the type
[18]

u,= (tana—hy)[(tana—h,)?+h7]* D2 h—2)*,
. 16
7 ZZAE(l—A)n\sij , (16)
o This expression can be integratedzirand using the no slip
E=(eije) " conditionu=0 atz=0, we arrive at
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A+

h
u=(tana—hy)[(tane—h,)?+ hi](x—l)/sz

Ill. CURRENTS WITH PLANAR SYMMETRY
1-|1
A1

The solution of the problem described by E21), includ-
ing the capillarity by means of substitutiof®2) and(23), is
(17) clearly very complicated and can only be found numerically
except for some very special cases. Here we shall study some
special solutions for flows of planar symmetry that can be
We define the averageasﬂzhflfgudz Then obtained analytically in closed form. We shall ignore surface
tension, and assume that the flow depends only onxthe
coordinate. Thet,=0 (so thatv =0), and Eq/(21) reduces
to

u=k(tana—h,)[(tana—h,)2+hZ]*-D2r+1 - (18)

wherek=K"/(\+2)>0. By means of a similar procedure,

- _ ApA+2y
we find the expression far=h"flvdz as hetka{[o(tana=ho "™} =0, (24)
_ where crEsgn(u_). This equation is the generalization to a
v=k(—hy[(tana—h,)?+h7]*~D"2h "1 (19)  nonhorizontal plane of an equation obtained by Gratpal.
[10].
Notice that the sign ob is opposite to the sign of the slope _ There are two time-independent solutions of E2d).
of the free surface in thg direction. In a similar way, the ©One of them is the trivial solutiom=(x—xo)tana if x
— = =
sign of u is opposite to the sign of the slope of the free rTo);?z,ork:talofrlefeXsTJ;(fgcéha'll'threeg'[ﬁ(if?sts a static fiuid with a
surface in thex direction, but we must remark that this slope '
is measured with respect to the horizontal, not with respect to
the plane.
Finally, the mass conservation equation can be written in
the form

h=hy=const andu=u,=k(tana)*h}**.  (25)

This solution represents a layer of fluid with constant thick-

. . ness flowing downward with velocity,.
h¢+ (uh),+(vh),=0. (20 The solutions of Eq(24) may have frontginterface and
we must distinguish two cases. Indicating wihthe posi-
If we insert Eqs(18) and(19) in the last equation we get tion of the front, a current limited downslope by a front has
h>0 for x<x; andh=0 for x>Xx;, as may occur when the
1 source of the flow is at the top of the incline. Some currents
+ _ N2 29N —1)/2p\+2 may have a front upslope, in which case 0 for x>x; and
kht+{(tana hyL(tana—hy®+(hy)?J D2, h=0 for x<x;. This happens, for example, when the source
of the fluid is at the foot of the slope. Assuming ttat: 0
whenx—x;, from Eq.(24) we find two possibile behaviors

(21)  of u near the front(a u—0, that is uninteresting, ofb)

i i _ h,— *o in a way such thau tends to a finite constant
This equationfor, equivalently, Eqs(18), (19), and (20)] different to zero. In this casex|h,/*h**1. Then, in a neigh-
describes the evolution of the free surface of a power Iav\borhoo d of the 1.‘ront we have X ' '
liquid flowing on an inclined plane in the lubrication ap-
proximation.

Surface tension effects can be easily included in the hoe|x— x| MM D), (26)
present theory. To this purpose it is sufficient to make in Eq.

(21) [or in Egs.(19), (19), and(20)] the replacements

+{(—hy)[(tana—h)?+(h,)2]*~D2n+2) =0,

Notice that the surface tension is expected to become impor-
tant near the front, since there the curvature of the free sur-
face is large. The implications of this fact will be discussed

hy—h,— pgcﬁ(hxx—i— hyy)x. 22) i Sec. IV.
A. Traveling waves
hy—h,— Y (Nt hyy)y s (23 To find traveling wave solutions we assume thade-
pg CoOS pends on the single variabde=x— ct, wherec is a constant.

Then Eq.(24) can be integrated once to obtain
where vy is the surface tension. Using these substitutions in

Eqg. (21 it can be verified with a little algebra that in the dh PR ELY
Newtonian caseN=1) one obtains the equation studied by ~ —tana—o o(citch) ’ (27
Brenner{19]. ds kh*+2
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h(m) A=09 A=1 A=1.1
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FIG. 2. Profiles of the traveling wave solutions. Thick lines
represent the upslope traveling waves; thin lines correspond to theh.
- . : thi

downslope traveling waves with a front and the dashed lines corre-
spond to the waves with no front. The straight oblique line indicates

the horizontal. The values of the parameters are20°, pg/A
=9.8x10° m~*s ™ they have been chosen so that 1 corre-
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Downslope traveling waves with no frofithese solutions
haveh=h,,. The hypergeometric function in E@®8) is then
complex, and it can be shown that

(31

h i
) =—auhg,.

hlm{zFl{Myliﬂ‘Fl;(—
N

Then, setting Im¢,) = wuh,,, we obtain a real solution for
any s, such thath—h,, for s— —o [so that in this limit it
tends to the steady downslope flow E(R5)], and h
—stana for s— + o (then the free surface tends to the hori-
zonta).

We now consider the case=—1 (c<0) to obtain the
rd family of solutions:

Upslope traveling wavedVe setc,=0 in Eq.(28), since

it can be absorbed interedefining its origin at the front, so
thats>0, and there is no upper bound loffor h—«, we

sponds to water. All lengths are in meter, and we have assumed@ve h=stana. Thus, in this case Eq(28) represents a

lc|=1 mi/s.

wherec, is an integration constant. ;=0 (this implies
u=c), it is possible to integrate E¢27) to obtain

k 1\ 1
hztana

h—thl{,u,l:,qul;cr =stana+c,,

(28)

lc|

where ,Fq(a,b;c;z) is the hypergeometric functiony

traveling wave solution running upslope with a front like Eq.
(29) at s=0, and whose profile far from the front tends to
the horizontal.

In Fig. 2 we show the three types of solutions for several
values ofi.

B. Nearly horizontal and nearly vertical incline

If we assume that tanv<<|h,|, Eq. (24) reduces to the
governing equation obtained by Grattenal. [10], with g
replaced byg cose. This condition is very restrictive be-
cause the lubricating flow approximation requirgs,|

=N/(N+1), andc, is a second integration constant. From ~H/L<1, which means that tam<H/L<<1.

this result we obtain three families of solutions, according to

In the opposite case, when tae|h,|, we must seto

the choice ofo andc,. Some of these solutions have fronts, =1 to ensure a real solution. Then Eg4) takes the form

whereh vanishes. Close to the fronts, we find that

N+1 N(2N+1)

A

o(s—sf) (29

in agreement with Eq(26).
We consider first the case=+1 (¢c>0). We callh,, the
solution of

c=k(tana)*h}" 1, (30)

that is, the same equation that relatgwvith hg in the steady
downslope flowsee Eq(25)]. The hypergeometric function
in Eq. (28) is real forh=<h,, and complex foh=h,. Then
two families of solutions arise:

Downslope traveling waves behind a froitthey have 0
<h=<h,,; in this case we can set=0 in Eq.(28), since it
can be absorbed int®redefining its origin at the front. For
these solutions we hawe<0, andh— h, for s— —o0. Then

he+c(h)h,=0 with c(h)=k(\+2)(tana)*h**1,

(32

This approximation(32) only describes downslope flows,
and is the non-Newtonian generalization of that obtained by
Huppert[6].

The general solution of the nonlinear first-order hyper-
bolic equation(32) can be found by the method of charac-
teristics (see, for example, Ref20]). If f(£) is an initial
profile, then the corresponding solution is given by

h=f(x—c(h)t). (33

Therefore, for those values &f such thatf’>0 (the ' de-
notes the derivative with respect %), the slopeh, will
remain positive, tends to zero, thus reinforcing the validity of
the assumption tam>|h,| that led us to Eq(32). But for the
values ofh for which f' <0, the wave will break and solu-
tion (33) will become multivalued. Breaking will occur first
for tg=—1/c'(f(&g)), at the point x= &g+ c(f(&p))tg,

they represent traveling waves running downslope, that fawhere &g is determined by the conditions that (f(&g))
behind the front §— — ) tend to the steady downslope flow <0 and that|c’(f(&g))| is maximum (at the breakingh,

[Eg. (25)], and whose profile near the froré<£0) is given
by Eq.(29).

diverges, thus invalidating the assumption de|h,|). All
these features can be seen in Fig. 3. It seems reasonable to

016307-4



THIN FILM OF NON-NEWTONIAN FLUID ON AN INCLINE PHYSICAL REVIEW E 67, 016307 (2003

hihg
FIG. 3. Solutions of Eq(32)
L=09 A=1 with an initial profile f(x)=hg[1
0.6 —(xIx0)?] fort=0's, 0.5 s and 1
04 s. The parameters are the same as
0.2 in Fi
g . in Fig. 2.
T 1.5 2 1 03 05 1 15 2 T 03 05 1 15 2

expect that if full equatior(24) is used, multivalued solu- ponents ofVh. In the Newtonian casen(=1) this is not
tions will not occur due to the diffusive effect of the term we true, sinceu=u(h,h,) andv=ov(h,h,).

d'sgardﬁd t? _ar(l\/te to ?ppr(tmmhatmﬁti). . if-simil In currents on an incline, gravity plays two roles: it drives
inafly, 1t 1S Interesting o show the unique sefl-simiiar y, liquid downslope, and it tends to smooth the free surface.

solution of Eq.(32), This can be seen clearly for the currents with planar geom-
etry, when they coordinate can be ignored. Then the first

X V1) effect can be described by thez-éveraged flow J.
= . (34  =k(tana) h**2, that is positive, indicating that the liquid
(A +2)k(tana)™t runs downslope. It is predominant, where tan|h,|. The

second effect is described by the diffusive flaly= o4k
This solution is the intermediate asymptotic of a wide clasd — o4d,h)*h**2, where o4=—sgnf,). It is important,
of non-self-similar solutions of Eq24). For example, the Wwhere tanv<<|h,|. However, notice that in the general planar

regions of the solutions shown in Fig. 3 with positive slopecase, the total flowl=uh is not a simple combination af,
tend asymptotically to solutioi34). Equation(34) is the  andJ,, except in the special case of the Newtonian liquid

non-Newtonian counterpart of a solution derived by Hupperfx =1). The general expression relating these flows is
[6] for Newtonian liquids.

(ad)= O'J?;D\‘f' gog(ogdg) ™. (38
IV. DISCUSSION The non-Newtonian rheology is responsible for this non-
) ) ) trivial combination of the gravitational and diffusive effects.
We derived the governing equations of a power law non- |t can pe noticed that there is a striking similarity between
Newtonian liquid flowing on an inclined plane, within the the traveling wave solutions we found in Sec. Il and the
lubrication approximation. With the inclusion of surface ten-tyreshold profiles of a Bingham fluid on an inclined plane
sion effects, these equations can be used as a starting pointgq,nd by Liu and Mei[11] (compare their Fig. 2 with our
investigate the influence of rheology on the fingering instarig. ). In fact, the threshold profiles of RdfL1] are identi-
bility and the other phenomena of interest. cal to the profiles of our traveling waves in the case of a
We have assumed that inertial effects are negligible, andjewtonian liquid f=1).
now we shall see the limitations arising from this assump- The solutions we have discussed do not include surface
tion. The order of magnitude of the inertial and stress termsension effects, which implies that the appropriate Bond
are number must be large. It is expected that the surface tension
will be more relevant where the curvature of the free surface
H is large, and this occurs close to a front. But precisely there,
), (350  the lubrication approximation breaks down, so that a correct
description of the current near a front cannot be obtained
making the replacements of Eq22) and (23) in Eq. (21),
1. AU H but requires a different, more complex approach that is be-
y. T~—< ) (36)  yond the scope of this paper. We recognize that this problem
P pHIM L is also present in the Newtonian case, but, while the shape of
a front as given by the lubrication approximation is incorrect,
this does not invalidate the remaining parts of the solutions
and the spreading relations derived from the theory. In this
connection we notice that Goodwin and Hom{@4| have
pUF~ A HA shown that the Newtonian counterpart of E21) describes
Re = TMO(“ 37 adequately the main body of the currents. We do not see any
reason why the same should not hold true for non-Newtonian

where Rg is the Reynolds number for a power law fluid fluids (see Ref[10]).

1, L

Then the inertia can be neglected if

[14].
From Eqgs.(18) and (19) we notice that due to the non- ACKNOWLEDGMENTS
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that both components of the velocity depend on both comand X151 of the University of Buenos Aires.

016307-5



C. A. PERAZZO AND J. GRATTON

[1] H.E. Huppert, J. Fluid Mechl21, 43 (1982.

[2] J. Gratton and F. Minotti, J. Fluid MecR10, 155 (1990.

[3] J.A. Diez, R. Gratton, and J. Gratton, Phys. Fluidg,A1148
(1992.

[4] B.M. Marino et al,, Phys. Rev. B54, 2628(1996.

[5] J. Buckmaster, J. Fluid Mecl81, 735 (1977.

[6] H.E. Huppert, NaturéLondon 300, 427 (1982.

[7] N. Silvi and E.B. Dussan, Phys. Flui@8, 5 (1985.

[8] L. Kondic and J. Diez, Phys. Fluidk3, 3168(2001).

[9] J.R. de Bruyn, P. Habdas, and S. Kim, Phys. Re&6H31504
(2002.

[10] J. Gratton, F. Minotti, and S. Mahajan, Phys. Re\6@ 6960
(1999.

[11] K. Liu and C.C. Mei, J. Fluid Mech207, 505(1989.

PHYSICAL REVIEW E67, 016307 (2003

[12] N. Fraysse and G.M. Homsy, Phys. Fluigls1491(1994).

[13] M.A. Spaid and G.M. Homsy, Phys. Fluids 460(1996.

[14] C.-O. Ng and C.C. Mei, J. Fluid Mecl263 151 (1994).

[15] K. Liu and C.C. Mei, Phys. Fluid§, 2577(1994).

[16] X. Huang and M.H. Gare, J. Fluid Mech374, 305 (1998.

[17] P. CoussotMudflow Rheology and DynamicBAHR Mono-
graph SeriegA.A. Balkema Publishers, Lisse, The Nether-
lands, 1997, Chap. 9.

[18] R.B. Byrd, Annu. Rev. Fluid Mech8, 13 (1976.

[19] M.P. Brenner, Phys. Rev. &7, 4597(1993.

[20] G. B. Whitham, Linear and Nonlinear Waves(Wiley-
Interscience, New York, 1974

[21] R. Goodwin and G.M. Homsy, Phys. Fluids3A515(1991).

016307-6



