
itaria,

PHYSICAL REVIEW E 67, 016307 ~2003!
Thin film of non-Newtonian fluid on an incline
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The slow flow of thin liquid films on solid surfaces is an important phenomenon in nature and in industrial
processes, and an intensive effort has been made to investigate it. It is well known that the contact line of
currents on an inclined surface may become unstable and then a pattern of ‘‘fingers’’ develops that affects the
quality of the coatings. This instability has been intensively studied due to its relevance for the technology of
various industrial processes. So far the theoretical and numerical research has been focused on Newtonian
fluids, notwithstanding that often in the real situations as well as in the experiments, the rheology of the
involved liquid is non-Newtonian. Using the lubrication approximation, we derive the governing equations for
a current of a power law non-Newtonian fluid on an inclined plane under the action of gravity and the viscous
stresses. We show that surface tension effects can be included in the theory by a slight modification of the
governing equations, that can then be used as a starting point to investigate the influence of rheology on the
fingering instability and other phenomena of interest. We consider the one-dimensional case and we present
three families of traveling wave solutions: two running downwards and the other upwards.

DOI: 10.1103/PhysRevE.67.016307 PACS number~s!: 47.15.Gf, 47.50.1d
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I. INTRODUCTION

The slow flow of a thin film of a liquid is an ubiquitou
phenomenon; it occurs in nature as in lava flows, the linin
of mammalian lungs, tear films in the eye, and in artific
instances such as microchip fabrication, tertiary oil recov
as well as in many coating processes. Thus, an inten
effort has been spent to achieve a good insight about th
types of flows.

The theory of these currents is usually developed wit
the frame of the lubrication aproximation. Flows on a ho
zontal plane have been studied theoretically and in the la
ratory by several authors~see, for example, Refs.@1–4#!.
The equations for the same problem but on a general top
raphy have been derived by Buckmaster@5#. Since the ex-
perimental research of Huppert@6# and Silvi and Dussan@7#
on currents with a contact line on an inclined plane, it is w
known that the contact line may become unstable and th
pattern of ‘‘fingers’’ develops. This instability has been i
tensively studied theoretically and numerically~see, Ref.@8#
and references therein! due to its relevance for the techno
ogy of various industrial processes. All the previously me
tioned theoretical and numerical works are based on the
sumption that the liquid is Newtonian, notwithstanding t
fact that the liquids involved in the real situations and in t
experiments are often non-Newtonian. There are few pa
where the non-Newtonian behavior is considered. In the
cent paper of de Bruynet al. @9#, the conditions for the fin-
gering instability of the contact line are investigated for
yield-stress fluid, but the equations that describe the ev
tion of the free surface are not derived. In Ref.@10# the
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authors obtained the governing equations of slow grav
flows on a horizontal plane for a fluid with a power la
rheology, and in Ref.@11# the flow of a Bingham fluid on an
incline is studied. Both works are based on the lubricat
approximation. We must also mention in this context the
vestigation of the stability of the viscoelastic coating flow
by Fraysse and Homsy@12# and Spaid and Homsy@13#. In
related problems concerning flows over nonhorizontal s
faces, the power law rheology as well as the Bingham mo
have been assumed in the investigation of roll waves o
shallow layer of fluid mud within the hydraulic approxima
tion @14,15#. The same approximation in conjunction wit
the viscoplastic Herschel-Bulkley model has been emplo
to study mud flows down a slope@16#. See also the work of
Coussot on roll waves of non-Newtonian fluids@17#.

In this paper, we investigate theoretically the slow flow
a power law non-Newtonian liquid on an incline. In Sec.
we derive within the lubrication approximation the gover
ing equations for the evolution of the free surface and
velocity of the fluid when it is under the effect of gravity an
viscous stresses. Since the role of surface tension appea
be crucial in the fingering process, and the influence of n
Newtonian behavior on this phenomenon has not been in
tigated, at the end of this section we show how to modify
governing equations to take into account the surface tens
In Sec. III we consider the simple one-dimensional ca
where the flow is downslope or upslope. Besides the t
very simple solutions, we find three families of travelin
wave solutions that can be obtained in closed form. In ad
tion, we discuss the flow in the limits of a very gentle and
very steep slope. Section IV contains the final discussion

II. BASIC EQUATIONS

We consider a fluid moving on a nonhorizontal plan
whose angle of inclination isa, as shown in Fig. 1. The
©2003 The American Physical Society07-1
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coordinatez is perpendicular to the plane, and thex-y coor-
dinates lie in the plane,y is horizontal, andx increases down-
ward. We denote the components of the velocity of the fl
in the directionsx, y, andz asu, v, andw, respectively.

Let z5h[h(x,y,t) be the free surface of the curren
whose characteristic thickness and characteristic length a
the plane we denote withH and L, respectively. The main
assumption in the lubrication approximation is

H!L. ~1!

From this, it is clear that the component of the velocity p
allel to the plane is much larger than the normal compon
so that

Au21v2@uwu. ~2!

We shall consider sufficiently slow flows so that the inert
effects can be neglected. It will be shown later that this
quires that the appropriate Reynolds number must be of
order of unity or less. To derive the governing equations
these flows we shall disregard momentarily the surface
sion, so that the liquid is flowing under the action of grav
and the viscous stresses. At the end of this section, we s
how these equations must be modified to include capilla
effects.

The equations of momentum balance and the equatio
continuity can be written as

2]xp1]xtxx1]ytxy1]ztxz1rg sina50, ~3!

2]yp1]xtyx1]ytyy1]ztyz50, ~4!

2]zp1]xtzx1]ytzy1]ztzz2rg cosa50, ~5!

]xu1]yv1]zw50, ~6!

wherep is the pressure,r is the density,g is the acceleration
of gravity, andt i j are the components of the deviatoric stre
tensor.

We assume a power law constitutive equation of the t
@18#

t i j 52AE(12l)/l«̇ i j ,

E5~ «̇ i j «̇ i j !
1/2,

FIG. 1. Geometry of the problem.
01630
d

ng

-
t,

l
-
e
f
n-

w
y

of

s

e

«̇ i j 5
1

2
~] jv i1] iv j !, ~7!

where«̇ i j are the components of the strain rate tensor,E is its
second invariant, andA and l are positive constants. Th
power law rheology is the simplest way to model many no
Newtonian fluids of practical interest, and with appropria
choices ofA andl according to the strain rates of the pro
lem at hand, it describes reasonably well their behavior. T
Newtonian rheology is retrieved settingl51, in which case
A is the viscosity.

We callU uu andW the characteristic velocities parallel an
perpendicular to the plane, respectively (U and V are thex
andy components ofU uu , respectively!. From Eq.~6! we find
that U uu@W5HU uu /L. Using this result, rheological law
~7!, and Eq.~1!, it is possible to estimate the order of ma
nitude of each term in Eqs.~3!, ~4!, and~5!. Then, retaining
only the relevant terms, these equations can be approxim
to

2]xp1]ztxz1rg sina50, ~8!

2]yp1]ztyz50, ~9!

2]zp2rg cosa50. ~10!

The last equation states that the pressure is hydrostati
usual in the lubrication approximation. Integrating this equ
tion and using the boundary conditionp50 atz5h, we find

p5rg cosa~h2z!. ~11!

The relevant components of stress tensor are

txz5A$ 1
2 @~]zu!21~]zv !2#%(12l)/2l]zu, ~12!

tyz5A$ 1
2 @~]zu!21~]zv !2#%(12l)/2l]zy. ~13!

Replacing Eqs.~11!, ~12!, and~13! in Eqs.~8! and~9!, inte-
grating fromz50 to z5h, and imposing the no stress con
dition at the free surface (uz5vz50 at z5h), we obtain

@uz
21vz

2# (12l)/2luz5K~ tana2hx!~h2z!, ~14!

@uz
21vz

2# (12l)/2lvz52Khy~h2z!, ~15!

whereK[A212(12l)/2lrg cosa.0 and the suffixes ofh, u,
v denote derivatives. After some algebraic manipulation
these equations it is possible to obtain

uz5~ tana2hx!@~ tana2hx!
21hy

2# (l21)/2Kl~h2z!l.
~16!

This expression can be integrated inz, and using the no slip
conditionu50 at z50, we arrive at
7-2
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THIN FILM OF NON-NEWTONIAN FLUID ON AN INCLINE PHYSICAL REVIEW E 67, 016307 ~2003!
u5~ tana2hx!@~ tana2hx!
21hy

2# (l21)/2Kl
hl11

l11 F12S 1

2
z

hD l11G . ~17!

We define the averageu as ū5h21*0
hudz. Then

ū5k~ tana2hx!@~ tana2hx!
21hy

2# (l21)/2hl11, ~18!

wherek[Kl/(l12).0. By means of a similar procedure
we find the expression forv̄5h21*0

hvdz as

v̄5k~2hy!@~ tana2hx!
21hy

2# (l21)/2hl11. ~19!

Notice that the sign ofv̄ is opposite to the sign of the slop
of the free surface in they direction. In a similar way, the
sign of ū is opposite to the sign of the slope of the fr
surface in thex direction, but we must remark that this slop
is measured with respect to the horizontal, not with respec
the plane.

Finally, the mass conservation equation can be written
the form

ht1~ ūh!x1~ v̄h!y50. ~20!

If we insert Eqs.~18! and~19! in the last equation we ge

1

k
ht1$~ tana2hx!@~ tana2hx!

21~hy!2# (l21)/2hl12%x

1$~2hy!@~ tan,a2hx!
21~hy!2# (l21)/2hl12%y50.

~21!

This equation@or, equivalently, Eqs.~18!, ~19!, and ~20!#
describes the evolution of the free surface of a power
liquid flowing on an inclined plane in the lubrication ap
proximation.

Surface tension effects can be easily included in
present theory. To this purpose it is sufficient to make in
~21! @or in Eqs.~18!, ~19!, and~20!# the replacements

hx→hx2
g

rg cosa
~hxx1hyy!x , ~22!

hy→hy2
g

rg cosa
~hxx1hyy!y , ~23!

whereg is the surface tension. Using these substitutions
Eq. ~21! it can be verified with a little algebra that in th
Newtonian case (l51) one obtains the equation studied
Brenner@19#.
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III. CURRENTS WITH PLANAR SYMMETRY

The solution of the problem described by Eq.~21!, includ-
ing the capillarity by means of substitutions~22! and~23!, is
clearly very complicated and can only be found numerica
except for some very special cases. Here we shall study s
special solutions for flows of planar symmetry that can
obtained analytically in closed form. We shall ignore surfa
tension, and assume that the flow depends only on thx

coordinate. Thenhy50 ~so thatv̄50), and Eq.~21! reduces
to

ht1ks$@s~ tana2hx!#
lhl12%x50, ~24!

where s[sgn(ū). This equation is the generalization to
nonhorizontal plane of an equation obtained by Grattonet al.
@10#.

There are two time-independent solutions of Eq.~24!.
One of them is the trivial solutionh5(x2x0)tana if x
>x0 , h50 if x,x0, that represents a static fluid with
horizontal free surface. The other is

h5h05const andū5ū05k~ tana!lh0
l11 . ~25!

This solution represents a layer of fluid with constant thic
ness flowing downward with velocityū0.

The solutions of Eq.~24! may have fronts~interfaces! and
we must distinguish two cases. Indicating withxf the posi-
tion of the front, a current limited downslope by a front h
h.0 for x,xf andh50 for x.xf , as may occur when the
source of the flow is at the top of the incline. Some curre
may have a front upslope, in which caseh.0 for x.xf and
h50 for x,xf . This happens, for example, when the sour
of the fluid is at the foot of the slope. Assuming thath→0
whenx→xf , from Eq.~24! we find two possibile behaviors
of ū near the front:~a! ū→0, that is uninteresting, or~b!

hx→6` in a way such thatū tends to a finite constan
different to zero. In this caseū}uhxulhl11. Then, in a neigh-
borhood of the front we have

h}ux2xf ul/(2l11). ~26!

Notice that the surface tension is expected to become im
tant near the front, since there the curvature of the free
face is large. The implications of this fact will be discuss
in Sec. IV.

A. Traveling waves

To find traveling wave solutions we assume thath de-
pends on the single variables[x2ct, wherec is a constant.
Then Eq.~24! can be integrated once to obtain

dh

ds
5tana2sFs~c11ch!

khl12 G 1/l

, ~27!
7-3
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where c1 is an integration constant. Ifc150 ~this implies
ū5c), it is possible to integrate Eq.~27! to obtain

h2h2F1Fm,1;m11;sS k

ucu D
1/l

h
1
mtanaG5s tana1c2 ,

~28!

where 2F1(a,b;c;z) is the hypergeometric function,m
5l/(l11), andc2 is a second integration constant. Fro
this result we obtain three families of solutions, according
the choice ofs andc2. Some of these solutions have fron
whereh vanishes. Close to the fronts, we find that

h5
ucu
k F2S 2l11

l Ds~s2sf !Gl/(2l11)

~29!

in agreement with Eq.~26!.
We consider first the cases511 (c.0). We callhm the

solution of

c5k~ tana!lhm
l11 , ~30!

that is, the same equation that relatesū0 with h0 in the steady
downslope flow@see Eq.~25!#. The hypergeometric function
in Eq. ~28! is real forh<hm and complex forh>hm . Then
two families of solutions arise:

Downslope traveling waves behind a front. They have 0
<h<hm ; in this case we can setc250 in Eq. ~28!, since it
can be absorbed intos redefining its origin at the front. Fo
these solutions we haves,0, andh→hm for s→2`. Then
they represent traveling waves running downslope, that
behind the front (s→2`) tend to the steady downslope flo
@Eq. ~25!#, and whose profile near the front (s50) is given
by Eq. ~29!.

FIG. 2. Profiles of the traveling wave solutions. Thick lin
represent the upslope traveling waves; thin lines correspond to
downslope traveling waves with a front and the dashed lines co
spond to the waves with no front. The straight oblique line indica
the horizontal. The values of the parameters area520°, rg/A
59.83106 m21 s21/l; they have been chosen so thatl51 corre-
sponds to water. All lengths are in meter, and we have assu
ucu51 m/s.
01630
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Downslope traveling waves with no front. These solutions
haveh>hm . The hypergeometric function in Eq.~28! is then
complex, and it can be shown that

hImF 2F1Fm,1;m11;S h

hm
D 1/mG G52pmhm . ~31!

Then, setting Im(c2)5pmhm , we obtain a real solution for
any s, such thath→hm for s→2` @so that in this limit it
tends to the steady downslope flow Eq.~25!#, and h
→s tana for s→1` ~then the free surface tends to the ho
zontal!.

We now consider the cases521 (c,0) to obtain the
third family of solutions:

Upslope traveling waves. We setc250 in Eq. ~28!, since
it can be absorbed intos redefining its origin at the front, so
that s.0, and there is no upper bound ofh; for h→`, we
have h5s tana. Thus, in this case Eq.~28! represents a
traveling wave solution running upslope with a front like E
~29! at s50, and whose profile far from the front tends
the horizontal.

In Fig. 2 we show the three types of solutions for seve
values ofl.

B. Nearly horizontal and nearly vertical incline

If we assume that tana!uhxu, Eq. ~24! reduces to the
governing equation obtained by Grattonet al. @10#, with g
replaced byg cosa. This condition is very restrictive be
cause the lubricating flow approximation requiresuhxu
;H/L!1, which means that tana!H/L!1.

In the opposite case, when tana@uhxu, we must sets
51 to ensure a real solution. Then Eq.~24! takes the form

ht1c~h!hx50 with c~h!5k~l12!~ tana!lhl11.
~32!

This approximation~32! only describes downslope flows
and is the non-Newtonian generalization of that obtained
Huppert@6#.

The general solution of the nonlinear first-order hyp
bolic equation~32! can be found by the method of chara
teristics ~see, for example, Ref.@20#!. If f (j) is an initial
profile, then the corresponding solution is given by

h5 f „x2c~h!t…. ~33!

Therefore, for those values ofh such thatf 8.0 ~the 8 de-
notes the derivative with respect toj), the slopehx will
remain positive, tends to zero, thus reinforcing the validity
the assumption tana@uhxu that led us to Eq.~32!. But for the
values ofh for which f 8,0, the wave will break and solu
tion ~33! will become multivalued. Breaking will occur firs
for tB521/c8„f (jB)…, at the point x5jB1c„f (jB)…tB ,
where jB is determined by the conditions thatc8„f (jB)…
,0 and thatuc8„f (jB)…u is maximum ~at the breakinghx
diverges, thus invalidating the assumption tana@uhxu). All
these features can be seen in Fig. 3. It seems reasonab
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FIG. 3. Solutions of Eq.~32!
with an initial profile f (x)5h0@1
2(x/x0)2# for t50 s, 0.5 s and 1
s. The parameters are the same
in Fig. 2.
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expect that if full equation~24! is used, multivalued solu
tions will not occur due to the diffusive effect of the term w
discarded to arrive to approximation~32!.

Finally, it is interesting to show the unique self-simil
solution of Eq.~32!,

h5F x

~l12!k~ tana!lt
G 1/(l11)

. ~34!

This solution is the intermediate asymptotic of a wide cla
of non-self-similar solutions of Eq.~24!. For example, the
regions of the solutions shown in Fig. 3 with positive slo
tend asymptotically to solution~34!. Equation ~34! is the
non-Newtonian counterpart of a solution derived by Hupp
@6# for Newtonian liquids.

IV. DISCUSSION

We derived the governing equations of a power law n
Newtonian liquid flowing on an inclined plane, within th
lubrication approximation. With the inclusion of surface te
sion effects, these equations can be used as a starting po
investigate the influence of rheology on the fingering ins
bility and the other phenomena of interest.

We have assumed that inertial effects are negligible,
now we shall see the limitations arising from this assum
tion. The order of magnitude of the inertial and stress ter
are

~vW •¹W !vW ;
U uu

2

L S 1,1,
H

L D , ~35!

1

r
¹W • t̄̄;

AUuu
1/l

rH (1/l)11 S 1,1,
H

L D . ~36!

Then the inertia can be neglected if

Rel[
rU uu

221/lH1/l

A
;O~1!, ~37!

where Rel is the Reynolds number for a power law flu
@14#.

From Eqs.~18! and ~19! we notice that due to the non
Newtonian rheologyū5ū(h,hx ,hy) and v̄5 v̄(h,hx ,hy), so
that both components of the velocity depend on both co
01630
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ponents of¹W h. In the Newtonian case (l51) this is not
true, sinceū5ū(h,hx) and v̄5 v̄(h,hy).

In currents on an incline, gravity plays two roles: it drive
the liquid downslope, and it tends to smooth the free surfa
This can be seen clearly for the currents with planar geo
etry, when they coordinate can be ignored. Then the fir
effect can be described by the (z-averaged! flow Jc
5k(tana)lhl12, that is positive, indicating that the liquid
runs downslope. It is predominant, where tana@uhxu. The
second effect is described by the diffusive flowJd5sdk
(2sd]xh)lhl12, where sd52sgn(hx). It is important,
where tana!uhxu. However, notice that in the general plan
case, the total flowJ5ūh is not a simple combination ofJc
and Jd , except in the special case of the Newtonian liqu
(l51). The general expression relating these flows is

~sJ!1/l5sJc
1/l1ssd~sdJd!1/l. ~38!

The non-Newtonian rheology is responsible for this no
trivial combination of the gravitational and diffusive effect

It can be noticed that there is a striking similarity betwe
the traveling wave solutions we found in Sec. III and t
threshold profiles of a Bingham fluid on an inclined pla
found by Liu and Mei@11# ~compare their Fig. 2 with our
Fig. 2!. In fact, the threshold profiles of Ref.@11# are identi-
cal to the profiles of our traveling waves in the case o
Newtonian liquid (l51).

The solutions we have discussed do not include surf
tension effects, which implies that the appropriate Bo
number must be large. It is expected that the surface ten
will be more relevant where the curvature of the free surfa
is large, and this occurs close to a front. But precisely the
the lubrication approximation breaks down, so that a corr
description of the current near a front cannot be obtain
making the replacements of Eqs.~22! and ~23! in Eq. ~21!,
but requires a different, more complex approach that is
yond the scope of this paper. We recognize that this prob
is also present in the Newtonian case, but, while the shap
a front as given by the lubrication approximation is incorre
this does not invalidate the remaining parts of the solutio
and the spreading relations derived from the theory. In t
connection we notice that Goodwin and Homsy@21# have
shown that the Newtonian counterpart of Eq.~21! describes
adequately the main body of the currents. We do not see
reason why the same should not hold true for non-Newton
fluids ~see Ref.@10#!.
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